Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 900: 165537, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37454853

RESUMO

Vehicles are the third most occupied microenvironment, other than home and workplace, in developed urban areas. Vehicle cabins are confined spaces where occupants can mitigate their exposure to on-road nitrogen dioxide (NO2) and fine particulate matter (PM2.5) concentrations. Understanding which parameters exert the greatest influence on in-vehicle exposure underpins advice to drivers and vehicle occupants in general. This study assessed the in-vehicle NO2 and PM2.5 levels and developed stepwise general additive mixed models (sGAMM) to investigate comprehensively the combined and individual influences of factors that influence the in-vehicle exposures. The mean in-vehicle levels were 19 ± 18 and 6.4 ± 2.7 µg/m3 for NO2 and PM2.5, respectively. sGAMM model identified significant factors explaining a large fraction of in-vehicle NO2 and PM2.5 variability, R2 = 0.645 and 0.723, respectively. From the model's explained variability on-road air pollution was the most important predictor accounting for 22.3 and 30 % of NO2 and PM2.5 variability, respectively. Vehicle-based predictors included manufacturing year, cabin size, odometer reading, type of cabin filter, ventilation fan speed power, window setting, and use of air recirculation, and together explained 48.7 % and 61.3 % of NO2 and PM2.5 variability, respectively, with 41.4 % and 51.9 %, related to ventilation preference and type of filtration media, respectively. Driving-based parameters included driving speed, traffic conditions, traffic lights, roundabouts, and following high emitters and accounted for 22 and 7.4 % of in-vehicle NO2 and PM2.5 exposure variability, respectively. Vehicle occupants can significantly reduce their in-vehicle exposure by moderating vehicle ventilation settings and by choosing an appropriate cabin air filter.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio , Emissões de Veículos/análise , Monitoramento Ambiental , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , Material Particulado/análise , Exposição Ambiental/análise
2.
Environ Sci Technol Lett ; 10(6): 520-527, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37333938

RESUMO

Delhi, India, suffers from periods of very poor air quality, but little is known about the chemical production of secondary pollutants in this highly polluted environment. During the postmonsoon period in 2018, extremely high nighttime concentrations of NOx (NO and NO2) and volatile organic compounds (VOCs) were observed, with median NOx mixing ratios of ∼200 ppbV (maximum of ∼700 ppbV). A detailed chemical box model constrained to a comprehensive suite of speciated VOC and NOx measurements revealed very low nighttime concentrations of oxidants, NO3, O3, and OH, driven by high nighttime NO concentrations. This results in an atypical NO3 diel profile, not previously reported in other highly polluted urban environments, significantly perturbing nighttime radical oxidation chemistry. Low concentrations of oxidants and high nocturnal primary emissions coupled with a shallow boundary layer led to enhanced early morning photo-oxidation chemistry. This results in a temporal shift in peak O3 concentrations when compared to the premonsoon period (12:00 and 15:00 local time, respectively). This shift will likely have important implications on local air quality, and effective urban air quality management should consider the impacts of nighttime emission sources during the postmonsoon period.

3.
Sci Adv ; 9(3): eadd6266, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36652523

RESUMO

Particulate nitrate ([Formula: see text]) has long been considered a permanent sink for NOx (NO and NO2), removing a gaseous pollutant that is central to air quality and that influences the global self-cleansing capacity of the atmosphere. Evidence is emerging that photolysis of [Formula: see text] can recycle HONO and NOx back to the gas phase with potentially important implications for tropospheric ozone and OH budgets; however, there are substantial discrepancies in "renoxification" photolysis rate constants. Using aircraft and ground-based HONO observations in the remote Atlantic troposphere, we show evidence for renoxification occurring on mixed marine aerosols with an efficiency that increases with relative humidity and decreases with the concentration of [Formula: see text], thus largely reconciling the very large discrepancies in renoxification photolysis rate constants found across multiple laboratory and field studies. Active release of HONO from aerosol has important implications for atmospheric oxidants such as OH and O3 in both polluted and clean environments.

4.
Sci Total Environ ; 860: 160395, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36427737

RESUMO

Traffic related nitrogen dioxide (NO2) poses a serious environmental and health risk factor in the urban environment. Drivers and vehicle occupants in general may have acute exposure to NO2 levels. In order to identify key controllable measures to reduce vehicle occupant's exposure, this study measures NO2 exposure inside ten different vehicles under real world driving conditions and applies a targeted intervention by replacing previously used filters with new standard pollen and new activated carbon cabin filters. The study also evaluates the efficiency of the latter as a function of duration of use. The mean in-vehicle NO2 exposure across the tested vehicles, driving the same route under comparable traffic and ambient air quality conditions, was 50.8 ± 32.7 µg/m3 for the new standard pollen filter tests and 9.2 ± 8.6 µg/m3 for the new activated carbon filter tests. When implementing the new activated carbon filters, overall we observed significant (p < 0.05) reductions by 87 % on average (range 80 - 94.2 %) in the in-vehicle NO2 levels compared to the on-road concentrations. We further found that the activated carbon filter NO2 removal efficiency drops by 6.8 ± 0.6 % per month; showing a faster decay in removal efficiency after the first 6 months of use. These results offer novel insights into how the general population can control and reduce their exposure to traffic related NO2. The use and regular replacement of activated carbon cabin air filters represents a relatively inexpensive method to significantly reduce in-vehicle NO2 exposure.


Assuntos
Filtros de Ar , Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , Carvão Vegetal , Fatores de Risco , Emissões de Veículos/prevenção & controle , Emissões de Veículos/análise , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Material Particulado/análise
5.
Sci Adv ; 8(14): eabm4435, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35394832

RESUMO

Tropical cities are experiencing rapid growth but lack routine air pollution monitoring to develop prescient air quality policies. Here, we conduct targeted sampling of recent (2000s to 2010s) observations of air pollutants from space-based instruments over 46 fast-growing tropical cities. We quantify significant annual increases in nitrogen dioxide (NO2) (1 to 14%), ammonia (2 to 12%), and reactive volatile organic compounds (1 to 11%) in most cities, driven almost exclusively by emerging anthropogenic sources rather than traditional biomass burning. We estimate annual increases in urban population exposure to air pollutants of 1 to 18% for fine particles (PM2.5) and 2 to 23% for NO2 from 2005 to 2018 and attribute 180,000 (95% confidence interval: -230,000 to 590,000) additional premature deaths in 2018 (62% increase relative to 2005) to this increase in exposure. These cities are predicted to reach populations of up to 80 million people by 2100, so regulatory action targeting emerging anthropogenic sources is urgently needed.

6.
Chemosphere ; 300: 134608, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35430204

RESUMO

China has implemented two national clean air actions in 2013-2017 and 2018-2020, respectively, with the aim of reducing primary emissions and hence improving air quality at a national level. It is important to examine the effectiveness of such emission reductions and assess the resulting changes in air quality. However, such evaluation is difficult as meteorological factors can amplify, or obscure the changes of air pollutants, in addition to the emission reduction. In this study, we applied the random forest machine learning technique to decouple meteorological influences from emissions changes, and examined the deweathered trends of air pollutants in 12 Chinese mega-cities during 2013-2020. The observed concentrations of all criteria pollutants except O3 showed significant declines from 2013 to 2020, with PM2.5 annual decline rates of 6-9% in most cities. In contrast, O3 concentrations increased with annual growth rates of 1-9%. Compared with the observed results, all the pollutants showed smoothed but similar variation in trend and annual rate-of-change after weather normalization. The response of O3 to NO2 concentrations indicated significant regional differences in photochemical regimes, and the differences between observed and deweathered results provided implications for volatile organic compound emission reductions in O3 pollution mitigation. We further evaluated the effectiveness of first and second clean air actions by removing the meteorological influence. We found that the meteorology can make negative or positive contribution in reducing pollutant concentrations from emission reduction, depending on type of pollutants, locations, and time period. Among the 12 mega-cities, only Beijing showed a positive meteorological contribution in amplifying reductions in main pollutants except O3 during both clean air action periods. Considering the large and variable impact of meteorological effects in changing air quality, we suggest that similar deweathered analysis is needed as a routine policy evaluation tool on a regional basis.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Cidades , Monitoramento Ambiental/métodos , Aprendizado de Máquina , Material Particulado/análise
7.
Environ Pollut ; 293: 118584, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34843856

RESUMO

Emergency responses to the COVID-19 pandemic led to major changes in travel behaviours and economic activities in 2020. Machine learning provides a reliable approach for assessing the contribution of these changes to air quality. This study investigates impacts of health protection measures upon air pollution and traffic emissions and estimates health and economic impacts arising from these changes during two national 'lockdown' periods in Oxford, UK. Air quality improvements were most marked during the first lockdown with reductions in observed NO2 concentrations of 38% (SD ± 24.0%) at roadside and 17% (SD ± 5.4%) at urban background locations. Observed changes in PM2.5, PM10 and O3 concentrations were not significant during first or second lockdown. Deweathering and detrending analyses revealed a 22% (SD ± 4.4%) reduction in roadside NO2 and 2% (SD ± 7.1%) at urban background with no significant changes in the second lockdown. Deweathered-detrended PM2.5 and O3 concentration changes were not significant, but PM10 increased in the second lockdown only. City centre traffic volume reduced by 69% and 38% in the first and second lockdown periods. Buses and passenger cars were the major contributors to NO2 emissions, with relative reductions of 56% and 77% respectively during the first lockdown, and less pronounced changes in the second lockdown. While car and bus NO2 emissions decreased during both lockdown periods, the overall contribution from buses increased relative to cars in the second lockdown. Sustained NO2 emissions reduction consistent with the first lockdown could prevent 48 lost life-years among the city population, with economic benefits of up to £2.5 million. Our findings highlight the critical importance of decoupling emissions changes from meteorological influences to avoid overestimation of lockdown impacts and indicate targeted emissions control measures will be the most effective strategy for achieving air quality and public health benefits in this setting.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Pandemias , Material Particulado/análise , Saúde Pública , SARS-CoV-2 , Reino Unido
8.
Atmos Chem Phys ; 21(7): 5549-5573, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-34462630

RESUMO

Epidemiological studies have consistently linked exposure to PM2.5 with adverse health effects. The oxidative potential (OP) of aerosol particles has been widely suggested as a measure of their potential toxicity. Several acellular chemical assays are now readily employed to measure OP; however, uncertainty remains regarding the atmospheric conditions and specific chemical components of PM2.5 that drive OP. A limited number of studies have simultaneously utilised multiple OP assays with a wide range of concurrent measurements and investigated the seasonality of PM2.5 OP. In this work, filter samples were collected in winter 2016 and summer 2017 during the atmospheric pollution and human health in a Chinese megacity campaign (APHH-Beijing), and PM2.5 OP was analysed using four acellular methods: ascorbic acid (AA), dithiothreitol (DTT), 2,7-dichlorofluorescin/hydrogen peroxidase (DCFH) and electron paramagnetic resonance spectroscopy (EPR). Each assay reflects different oxidising properties of PM2.5, including particle-bound reactive oxygen species (DCFH), superoxide radical production (EPR) and catalytic redox chemistry (DTT/AA), and a combination of these four assays provided a detailed overall picture of the oxidising properties of PM2.5 at a central site in Beijing. Positive correlations of OP (normalised per volume of air) of all four assays with overall PM2.5 mass were observed, with stronger correlations in winter compared to summer. In contrast, when OP assay values were normalised for particle mass, days with higher PM2.5 mass concentrations (µgm-3) were found to have lower mass-normalised OP values as measured by AA and DTT. This finding supports that total PM2.5 mass concentrations alone may not always be the best indicator for particle toxicity. Univariate analysis of OP values and an extensive range of additional measurements, 107 in total, including PM2.5 composition, gas-phase composition and meteorological data, provided detailed insight into the chemical components and atmospheric processes that determine PM2.5 OP variability. Multivariate statistical analyses highlighted associations of OP assay responses with varying chemical components in PM2.5 for both mass- and volume-normalised data. AA and DTT assays were well predicted by a small set of measurements in multiple linear regression (MLR) models and indicated fossil fuel combustion, vehicle emissions and biogenic secondary organic aerosol (SOA) as influential particle sources in the assay response. Mass MLR models of OP associated with compositional source profiles predicted OP almost as well as volume MLR models, illustrating the influence of mass composition on both particle-level OP and total volume OP. Univariate and multivariate analysis showed that different assays cover different chemical spaces, and through comparison of mass- and volume-normalised data we demonstrate that mass-normalised OP provides a more nuanced picture of compositional drivers and sources of OP compared to volume-normalised analysis. This study constitutes one of the most extensive and comprehensive composition datasets currently available and provides a unique opportunity to explore chemical variations in PM2.5 and how they affect both PM2.5 OP and the concentrations of particle-bound reactive oxygen species.

9.
Chemosphere ; 274: 129913, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33979925

RESUMO

Increasing emissions from sources such as construction and burning of biomass from crop residues, roadside and municipal solid waste have led to a rapid increase in the atmospheric concentrations of fine particulate matter (≤2.5 µm; PM2.5) over many Indian cities. Analyses of their chemical profiles are important for receptor models to accurately estimate the contributions from different sources. We have developed chemical source profiles for five important pollutant sources - construction (CON), paved road dust (PRD), roadside biomass burning (RBB), solid waste burning (SWB), and crop residue burning (CPB) - during three intensive campaigns (winter, summer and post-monsoon) in and around Delhi. We obtained chemical characterisations of source profiles incorporating carbonaceous material such as organic carbon (OC) and elemental carbon (EC), water-soluble ions (F-, Cl-, NO2-, NO3-, SO42-, PO43-, Na+ and NH4+), and elements (Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Rb, Sr, Ba, and Pb). CON was dominated by the most abundant elements, K, Si, Fe, Al, and Ca. PRD was also dominated by crustal elements, accounting for 91% of the total analysed elements. RBB, SWB and CPB profiles were dominated by organic matter, which accounted for 94%, 86.2% and 86% of the total PM2.5, respectively. The database of PM emission profiles developed from the sources investigated can be used to assist source apportionment studies for accurate quantification of the causes of air pollution and hence assist governmental bodies in formulating relevant countermeasures.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Cidades , Monitoramento Ambiental , Índia , Tamanho da Partícula , Material Particulado/análise , Estações do Ano , Emissões de Veículos/análise
12.
Environ Pollut ; 274: 116563, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33561599

RESUMO

Daytime atmospheric oxidation chemistry is conventionally considered to be driven primarily by the OH radical, formed via photolytic sources. In this paper we examine how, during winter when photolytic processes are slow, chlorine chemistry can have a significant impact on oxidative processes in the urban boundary layer. Photolysis of nitryl chloride (ClNO2) provides a significant source of chlorine atoms, which enhances the oxidation of volatile organic compounds (VOCs) and the production of atmospheric pollutants. We present a set of observations of ClNO2 and HONO made at urban locations in central England in December 2014 and February 2016. While direct emissions and in-situ chemical formation of HONO continue throughout the day, ClNO2 is only formed at night and is usually completely photolyzed by midday. Our data show that, during winter, ClNO2 often persists through the daylight hours at mixing ratios above 10-20 ppt (on average). In addition, relatively high mixing ratios of daytime HONO (>65 ppt) provide a strong source of OH radicals throughout the day. The combined effects of ClNO2 and HONO result in sustained sources of Cl and OH radicals from sunrise to sunset, which form additional ozone, PAN, oxygenated VOCs, and secondary organic aerosol. We show that radical sources such as ClNO2 and HONO can lead to a surprisingly photoactive urban atmosphere during winter and should therefore be included in atmospheric chemical models.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Atmosfera , Inglaterra
13.
Sci Adv ; 7(3)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523881

RESUMO

The COVID-19 lockdowns led to major reductions in air pollutant emissions. Here, we quantitatively evaluate changes in ambient NO2, O3, and PM2.5 concentrations arising from these emission changes in 11 cities globally by applying a deweathering machine learning technique. Sudden decreases in deweathered NO2 concentrations and increases in O3 were observed in almost all cities. However, the decline in NO2 concentrations attributable to the lockdowns was not as large as expected, at reductions of 10 to 50%. Accordingly, O3 increased by 2 to 30% (except for London), the total gaseous oxidant (O x = NO2 + O3) showed limited change, and PM2.5 concentrations decreased in most cities studied but increased in London and Paris. Our results demonstrate the need for a sophisticated analysis to quantify air quality impacts of interventions and indicate that true air quality improvements were notably more limited than some earlier reports or observational data suggested.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar , COVID-19/epidemiologia , Monitoramento Ambiental/métodos , Cidades , Gases/análise , Humanos , Londres , Aprendizado de Máquina , Dióxido de Nitrogênio/análise , Ozônio/análise , Paris , Material Particulado , Temperatura
14.
Faraday Discuss ; 226: 223-238, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33283833

RESUMO

Wintertime urban air pollution in many global megacities is characterised by episodic rapid increase in particulate matter concentrations associated with elevated relative humidity - so-called haze episodes, which have become characteristic of cities such as Beijing. Atmospheric chemistry within haze combines gas- and condensed-phase chemical processes, leading to the growth in secondary species such as sulphate aerosols. Here, we integrate observations of reactive gas phase species (HONO, OH, NOx) and time-resolved aerosol composition, to explore observational constraints on the mechanisms responsible for sulphate growth during the onset of haze events. We show that HONO abundance is dominated by established fast gas-phase photochemistry, but the consideration of the additional formation potentially associated with condensed-phase oxidation of S species by aqueous NO2 leading to NO2- production and hence HONO release, improves agreement between observed and calculated gas-phase HONO levels. This conclusion is highly dependent upon aerosol pH, ionic strength and particularly the parameterisation employed for S(iv) oxidation kinetics, for which an upper limit is derived.

15.
Sci Total Environ ; 609: 1464-1474, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28800689

RESUMO

Despite much work in recent years, vehicle emissions remain a significant contributor in many areas where air quality standards are under threat. Policy-makers are actively exploring options for next generation vehicle emission control and local fleet management policies, and new monitoring technologies to aid these activities. Therefore, we report here on findings from two separate but complementary blind evaluation studies of one new-to-market real-world monitoring option, HEAT LLC's Emission Detection And Reporting system or EDAR, an above-road open path instrument that uses Differential Absorption LIDAR to provide a highly sensitive and selective measure of passing vehicle emissions. The first study, by Colorado Department of Public Health and Environment and Eastern Research Group, was a simulated exhaust gas test exercise used to investigate the instrumental accuracy of the EDAR. Here, CO, NO, CH4 and C3H8 measurements were found to exhibit high linearity, low bias, and low drift over a wide range of concentrations and vehicle speeds. Instrument accuracy was high (R2 0.996 for CO, 0.998 for NO; 0.983 for CH4; and 0.976 for C3H8) and detection limits were 50 to 100ppm for CO, 10 to 30ppm for NO, 15 to 35ppmC for CH4, and, depending on vehicle speed, 100 to 400ppmC3 for C3H8. The second study, by the Universities of Birmingham and Leeds and King's College London, used the comparison of EDAR, on-board Portable Emissions Measurement System (PEMS) and car chaser (SNIFFER) system measurements collected under real-world conditions to investigate in situ EDAR performance. Given the analytical challenges associated with aligning these very different measurements, the observed agreements (e.g. EDAR versus PEMS R2 0.92 for CO/CO2; 0.97 for NO/CO2; ca. 0.82 for NO2/CO2; and, 0.94 for PM/CO2) were all highly encouraging and indicate that EDAR also provides a representative measure of vehicle emissions under real-world conditions.

16.
J Atmos Chem ; 74(2): 145-156, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32055083

RESUMO

Ocean emissions of inorganic and organic iodine compounds drive the biogeochemical cycle of iodine and produce reactive ozone-destroying iodine radicals that influence the oxidizing capacity of the atmosphere. Di-iodomethane (CH2I2) and chloro-iodomethane (CH2ICl) are the two most important organic iodine precursors in the marine boundary layer. Ship-borne measurements made during the TORERO (Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated VOC) field campaign in the east tropical Pacific Ocean in January/February 2012 revealed strong diurnal cycles of CH2I2 and CH2ICl in air and of CH2I2 in seawater. Both compounds are known to undergo rapid photolysis during the day, but models assume no night-time atmospheric losses. Surprisingly, the diurnal cycle of CH2I2 was lower in amplitude than that of CH2ICl, despite its faster photolysis rate. We speculate that night-time loss of CH2I2 occurs due to reaction with NO3 radicals. Indirect results from a laboratory study under ambient atmospheric boundary layer conditions indicate a k CH2I2+NO3 of ≤4 × 10-13 cm3 molecule-1 s-1; a previous kinetic study carried out at ≤100 Torr found k CH2I2+NO3 of 4 × 10-13 cm3 molecule-1 s-1. Using the 1-dimensional atmospheric THAMO model driven by sea-air fluxes calculated from the seawater and air measurements (averaging 1.8 +/- 0.8 nmol m-2 d-1 for CH2I2 and 3.7 +/- 0.8 nmol m-2 d-1 for CH2ICl), we show that the model overestimates night-time CH2I2 by >60 % but reaches good agreement with the measurements when the CH2I2 + NO3 reaction is included at 2-4 × 10-13 cm3 molecule-1 s-1. We conclude that the reaction has a significant effect on CH2I2 and helps reconcile observed and modeled concentrations. We recommend further direct measurements of this reaction under atmospheric conditions, including of product branching ratios.

17.
Environ Pollut ; 220(Pt B): 766-778, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27866854

RESUMO

London, like many major cities, has a noted air pollution problem, and a better understanding of the sources of airborne particles in the different size fractions will facilitate the implementation and effectiveness of control strategies to reduce air pollution. Thus, the trace elemental composition of the fine and coarse fraction were analysed at hourly time resolution at urban background (North Kensington, NK) and roadside (Marylebone Road, MR) sites within central London. Unlike previous work, the current study focuses on measurements during the summer providing a snapshot of contributing sources, utilising the high time resolution to improve source identification. Roadside enrichment was observed for a large number of elements associated with traffic emissions (Al, S, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Rb and Zr), while those elements that are typically from more regional sources (e.g. Na, Cl, S and K) were not found to have an appreciable increment. Positive Matrix Factorization (PMF) was applied for the source apportionment of the particle mass at both sites with similar sources being identified, including sea salt, airborne soil, traffic emissions, secondary inorganic aerosols and a Zn-Pb source. In the fine fraction, traffic emissions was the largest contributing source at MR (31.9%), whereas it was incorporated within an "urban background" source at NK, which had contributions from wood smoke, vehicle emissions and secondary particles. Regional sources were the major contributors to the coarse fraction at both sites. Secondary inorganic aerosols (which contained influences from shipping emissions and coal combustion) source factors accounted for around 33% of the PM10 at NK and were found to have the highest contributions from regional sources, including from the European mainland. Exhaust and non-exhaust sources both contribute appreciably to PM10 levels at the MR site, highlighting the continuing importance of vehicle-related air pollutants at roadside.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Material Particulado/análise , População Rural , Oligoelementos/análise , Monitoramento Ambiental , Londres , Tamanho da Partícula , Estações do Ano , Emissões de Veículos/análise
18.
Faraday Discuss ; 189: 191-212, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27105044

RESUMO

A substantial body of recent literature has shown that boundary layer HONO levels are higher than can be explained by simple, established gas-phase chemistry, to an extent that implies that additional HONO sources represent a major, or the dominant, precursor to OH radicals in such environments. This conclusion may be reached by analysis of point observations of (for example) OH, NO and HONO, alongside photochemical parameters; however both NO and HONO have non-negligible atmospheric lifetimes, so these approaches may be problematic if substantial spatial heterogeneity exists. We report a new dataset of HONO, NOx and HOx observations recorded at an urban background location, which support the existence of additional HONO sources as determined elsewhere. We qualitatively evaluate the possible impacts of local heterogeneity using a series of idealised numerical model simulations, building upon the work of Lee et al. (J. Geophys. Res., 2013, DOI: 10.1002/2013JD020341). The simulations illustrate the time required for photostationary state approaches to yield accurate results following substantial perturbations in the HOx/NOx/NOy chemistry, and the scope for bias to an inferred HONO source from NOx and VOC emissions in either a positive or negative sense, depending upon the air mass age following emission. To assess the extent to which these impacts may be present in actual measurements, we present exploratory spatially resolved measurements of HONO and NOx abundance obtained using a mobile instrumented laboratory. Measurements of the spatial variability of HONO in urban, suburban and rural environments show pronounced changes in abundance are found in proximity to major roads within urban areas, indicating that photo-stationary steady state (PSS) analyses in such areas are likely to be problematic. The measurements also show areas of very homogeneous HONO and NOx abundance in rural, and some suburban, regions, where the PSS approach is likely to be valid. Implications for future exploration of HONO production mechanisms are discussed.

19.
Environ Sci Technol ; 49(22): 13168-78, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26473383

RESUMO

Secondary organic aerosol (SOA) is well-known to have adverse effects on air quality and human health. However, the dynamic mechanisms occurring during SOA formation and evolution are poorly understood. The time-resolved SOA composition formed during the photo-oxidation of three aromatic compounds, methyl chavicol, toluene and 4-methyl catechol, were investigated at the European Photoreactor. SOA was collected using a particle into liquid sampler and analyzed offline using state-of-the-art mass spectrometry to produce temporal profiles of individual photo-oxidation products. In the photo-oxidation of methyl chavicol, 70 individual compounds were characterized and three distinctive temporal profile shapes were observed. The calculated mass fraction (Ci,aer/COA) of the individual SOA compounds showed either a linear trend (increasing/decreasing) or exponential decay with time. Substituted nitrophenols showed an exponential decay, with the nitro-group on the aromatic ring found to control the formation and loss of these species in the aerosol phase. Nitrophenols from both methyl chavicol and toluene photo-oxidation experiments showed a strong relationship with the NO2/NO (ppbv/ppbv) ratio and were observed during initial SOA growth. The location of the nitrophenol aromatic substitutions was found to be critically important, with the nitrophenol in the photo-oxidation of 4-methyl catechol not partitioning into the aerosol phase until irradiation had stopped; highlighting the importance of studying SOA formation and evolution at a molecular level.


Assuntos
Hidrocarbonetos Aromáticos/química , Luz , Material Particulado/análise , Derivados de Alilbenzenos , Anisóis/química , Atmosfera/química , Umidade , Nitrofenóis/análise , Oxidantes/química , Oxirredução/efeitos da radiação , Temperatura , Fatores de Tempo , Tolueno/química , Compostos Orgânicos Voláteis/análise
20.
Phys Chem Chem Phys ; 17(6): 4076-88, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25562069

RESUMO

The removal of SO2 in the presence of alkene-ozone systems has been studied for ethene, cis-but-2-ene, trans-but-2-ene and 2,3-dimethyl-but-2-ene, as a function of humidity, under atmospheric boundary layer conditions. The SO2 removal displays a clear dependence on relative humidity for all four alkene-ozone systems confirming a significant reaction for stabilised Criegee intermediates (SCI) with H2O. The observed SO2 removal kinetics are consistent with relative rate constants, k(SCI + H2O)/k(SCI + SO2), of 3.3 (±1.1) × 10(-5) for CH2OO, 26 (±10) × 10(-5) for CH3CHOO derived from cis-but-2-ene, 33 (±10) × 10(-5) for CH3CHOO derived from trans-but-2-ene, and 8.7 (±2.5) × 10(-5) for (CH3)2COO derived from 2,3-dimethyl-but-2-ene. The relative rate constants for k(SCI decomposition)/k(SCI + SO2) are -2.3 (±3.5) × 10(11) cm(-3) for CH2OO, 13 (±43) × 10(11) cm(-3) for CH3CHOO derived from cis-but-2-ene, -14 (±31) × 10(11) cm(-3) for CH3CHOO derived from trans-but-2-ene and 63 (±14) × 10(11) cm(-3) for (CH3)2COO. Uncertainties are ±2σ and represent combined systematic and precision components. These values are derived following the approximation that a single SCI is present for each system; a more comprehensive interpretation, explicitly considering the differing reactivity for syn- and anti-SCI conformers, is also presented. This yields values of 3.5 (±3.1) × 10(-4) for k(SCI + H2O)/k(SCI + SO2) of anti-CH3CHOO and 1.2 (±1.1) × 10(13) for k(SCI decomposition)/k(SCI + SO2) of syn-CH3CHOO. The reaction of the water dimer with CH2OO is also considered, with a derived value for k(CH2OO + (H2O)2)/k(CH2OO + SO2) of 1.4 (±1.8) × 10(-2). The observed SO2 removal rate constants, which technically represent upper limits, are consistent with decomposition being a significant, structure dependent, sink in the atmosphere for syn-SCI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...